11,937 research outputs found

    Physical Dissipation and the Method of Controlled Lagrangians

    Get PDF
    We describe the effect of physical dissipation on stability of equilibria which have been stabilized, in the absence of damping, using the method of controlled Lagrangians. This method applies to a class of underactuated mechanical systems including “balance” systems such as the pendulum on a cart. Since the method involves modifying a system’s kinetic energy metric through feedback, the effect of dissipation is obscured. In particular, it is not generally true that damping makes a feedback-stabilized equilibrium asymptotically stable. Damping in the unactuated directions does tend to enhance stability, however damping in the controlled directions must be “reversed” through feedback. In this paper, we suggest a choice of feedback dissipation to locally exponentially stabilize a class of controlled Lagrangian systems

    Dissipation and Controlled Euler-PoincarĂŠ Systems

    Get PDF
    The method of controlled Lagrangians is a technique for stabilizing underactuated mechanical systems which involves modifying a system’s energy and dynamic structure through feedback. These modifications can obscure the effect of physical dissipation in the closed-loop. For example, generic damping can destabilize an equilibrium which is closed-loop stable for a conservative system model. In this paper, we consider the effect of damping on Euler-Poincaré (special reduced Lagrangian) systems which have been stabilized about an equilibrium using the method of controlled Lagrangians. We describe a choice of feed-back dissipation which asymptotically stabilizes a sub-class of controlled Euler-Poincaré systems subject to physical damping. As an example, we consider intermediate axis rotation of a damped rigid body with a single internal rotor

    Gravitational waves from binary systems in circular orbits: Convergence of a dressed multipole truncation

    Get PDF
    The gravitational radiation originating from a compact binary system in circular orbit is usually expressed as an infinite sum over radiative multipole moments. In a slow-motion approximation, each multipole moment is then expressed as a post-Newtonian expansion in powers of v/c, the ratio of the orbital velocity to the speed of light. The bare multipole truncation of the radiation consists in keeping only the leading-order term in the post-Newtonian expansion of each moment, but summing over all the multipole moments. In the case of binary systems with small mass ratios, the bare multipole series was shown in a previous paper to converge for all values v/c < 2/e, where e is the base of natural logarithms. In this paper, we extend the analysis to a dressed multipole truncation of the radiation, in which the leading-order moments are corrected with terms of relative order (v/c)^2 and (v/c)^3. We find that the dressed multipole series converges also for all values v/c < 2/e, and that it coincides (within 1%) with the numerically ``exact'' results for v/c < 0.2.Comment: 9 pages, ReVTeX, 1 postscript figur

    Development of an algebraic turbulence model for analysis of propulsion flows

    Get PDF
    A simple turbulence model that will be applicable to propulsion flows having both wall bounded and unbounded regions was developed and installed within the PARC Navier-Stokes code by linking two existing algebraic turbulence models. The first is the Modified Mixing Length (MML) model which is optimized for wall bounded flows. The second is the Thomas model, the standard algebraic turbulence model in PARC which has been used to calculate both bounded and unbounded turbulent flows but was optimized for the latter. This paper discusses both models and the method employed to link them into one model (referred to as the MMLT model). The PARC code with the MMLT model was applied to two dimensional turbulent flows over a flat plate and over a backward facing step to validate and optimize the model and to compare its predictions to those obtained with the three turbulence models already available in PARC

    Effects of long-chord acoustically treated stator vanes on fan noise. 2: Effect of acoustical treatment

    Get PDF
    A set of long chord stator vanes was designed to replace the vanes in an existing fan stage. The long chord stator vanes consisted of a turning section and axial extension pieces, all of which incorporated acoustic damping material. The long chord stator vanes were tested in two lengths, with the long version giving more noise reduction than the short, primarily because of the additional lining material. The noise reduction achieved with the acoustically treated long chord stator vanes was compared with the reduction achieved by an acoustically treated exhaust splitter. The long chord stator was at least as good as the splitter as a method for incorporating acoustic lining material. In addition, comparing an acoustic three ring inlet and an acoustic wall-only inlet discloses that the wall-only inlet could be used in an engine where the noise reduction requirements are not too stringent

    Effects of long-chord acoustically treated stator vanes on fan noise. 1: Effect of long chord (taped stator)

    Get PDF
    A set of long-chord stator vanes was designed to replace the vanes in an existing fan stage. The long vanes consisted of a turning section and axial extension pieces, both of which incorporated acoustic damping material. The acoustic damping material was made inactive for these tests by covering with metal tape, and the stator vanes were tested in three length configurations. Compared to the values for the original stage, broadband noise was reduced in the middle to high frequencies with the long stator vanes, but a broadband noise increase was observed at the low frequencies. No change was observed in the blade passage tone, but some aft end reduction in the overtones was observed

    Intrinsic and Rashba Spin-orbit Interactions in Graphene Sheets

    Full text link
    Starting from a microscopic tight-binding model and using second order perturbation theory, we derive explicit expressions for the intrinsic and Rashba spin-orbit interaction induced gaps in the Dirac-like low-energy band structure of an isolated graphene sheet. The Rashba interaction parameter is first order in the atomic carbon spin-orbit coupling strength Ξ\xi and first order in the external electric field EE perpendicular to the graphene plane, whereas the intrinsic spin-orbit interaction which survives at E=0 is second order in Ξ\xi. The spin-orbit terms in the low-energy effective Hamiltonian have the form proposed recently by Kane and Mele. \textit{Ab initio} electronic structure calculations were performed as a partial check on the validity of the tight-binding model.Comment: 5 pages, 2 figures; typos corrected, references update

    STABILIZATION OF THREE-DIMENSIONAL COLLECTIVE MOTION

    Full text link
    peer reviewedThis paper proposes a methodology to stabilize relative equilibria in a model of identical, steered particles moving in three-dimensional Euclidean space. Exploiting the Lie group structure of the resulting dynamical system, the stabilization problem is reduced to a consensus problem on the Lie algebra. The resulting equilibria correspond to parallel, circular and helical formations. We first derive the stabilizing control laws in the presence of all-to-all communication. Providing each agent with a consensus estimator, we then extend the results to a general setting that allows for unidirectional and time-varying communication topologies
    • …
    corecore